
Remy Belmonte remy.belmonte@dauphine.eu

Lab 5

Algorithmic and advanced

Programming in Python

1

Algorithmic and advanced Programming in Python

Problem 1: maximum element in a binary tree

• Give an algorithm for finding maximum element in binary tree. Give
Time Complexity and Space Complexity. Give at least two solutions
like what we saw in master class for order traversal

2

Algorithmic and advanced Programming in Python

Problem 1: maximum element in a binary tree

• Give an algorithm for finding maximum element in binary tree.

• Solution 1: One simple way of solving this problem is: find the
maximum element in left subtree, find the maximum element in right
sub tree, compare them with root data and select the one which is
giving the maximum value. This approach can be easily implemented
with recursion.

• Time Complexity: O(𝑛). Space Complexity: O(𝑛).

3

Algorithmic and advanced Programming in Python

Problem 1: maximum element in a binary tree

• Give an algorithm for finding maximum element in binary tree.

• Solution 2: do it without recursion. Using level order traversal: just
observe the element’s data while deleting.

• Time Complexity: O(𝑛). Space Complexity: O(𝑛).

4

Algorithmic and advanced Programming in Python

Problem 2: Searching an element in binary tree

• Give an algorithm for searching an element in binary tree. Give Time
Complexity and Space Complexity. Give at least two solutions like
what we saw in master class for order traversal

5

Algorithmic and advanced Programming in Python

Problem 2: Searching an element in binary tree

• Give an algorithm for searching an element in binary tree.

• Solution 1: Given a binary tree, return true if a node with data is found
in the tree. Recurse down the tree, choose the left or right branch by
comparing data with each node’s data.

• Time Complexity: O(𝑛). Space Complexity: O(𝑛).

6

Algorithmic and advanced Programming in Python

Problem 2: Searching an element in binary tree

• Give an algorithm for searching an element in binary tree.

• Solution 2: do it without recursion. We can use level order traversal
for solving this problem. The only change required in level order
traversal is, instead of printing the data, we just need to check whether
the root data is equal to the element we want to search.

• Time Complexity: O(𝑛). Space Complexity: O(𝑛).

7

Algorithmic and advanced Programming in Python

Problem 3: Inserting an element in binary tree

• Give an algorithm for inserting an element into binary tree. Give Time
Complexity and Space Complexity.

8

Algorithmic and advanced Programming in Python

Problem 3: Inserting an element in binary tree

• Give an algorithm for inserting an element into binary tree.

• Solution: Since the given tree is a binary tree, we can insert the
element wherever we want. To insert an element, we can use the level
order traversal and insert the element wherever we find the node
whose left or right child is nil.

• Time Complexity: O(𝑛). Space Complexity: O(𝑛).

9

Algorithmic and advanced Programming in Python

Problem 4: Size of a binary tree

• Give an algorithm for finding the size of binary tree. Give Time
Complexity, Space Complexity and two solutions

10

Algorithmic and advanced Programming in Python

Problem 4: Size of a binary tree

• Give an algorithm for finding the size of binary tree.

• Solution 1: Calculate the size of left and right subtrees recursively,
add 1 (current node) and return to its parent.

• Time Complexity: O(𝑛). Space Complexity: O(𝑛).

• Solution 2: Solve without recursion using level order traversal.

• Time Complexity: O(𝑛). Space Complexity: O(𝑛).

11

Algorithmic and advanced Programming in Python

Problem 5: reverse order

• Give an algorithm for printing the level order data in reverse order. For
example, the output for the below tree should be: [[4 5 6 7] [2 3] [1]]

12

Algorithmic and advanced Programming in Python

Problem 6: delete a tree

• Give an algorithm for deleting the tree.

13

Algorithmic and advanced Programming in Python

Problem 6: delete a tree

• Give an algorithm for deleting the tree.

• Solution: To delete a tree, we must traverse all the nodes of the tree
and delete them one by one. So which traversal should we use:
InOrder, PreOrder, PostOrder or Level order Traversal?

• Before deleting the parent node, we should delete its children nodes
first. We can use post order traversal as it does the work without
storing anything. We can delete tree with other traversals also with
extra space complexity. For the following, tree nodes are deleted in
order – 4, 5, 2, 3, 1.

14

Algorithmic and advanced Programming in Python

Problem 7: depth of a binary tree

• Give an algorithm for finding the height (or depth) of the binary tree.

15

Algorithmic and advanced Programming in Python

Problem 7: depth of a binary tree

• Give an algorithm for finding the height (or depth) of the binary tree.

• Solution 1: Recursively calculate height of left and right subtrees of a
node and assign height to the node as max of the heights of two
children plus 1. This is similar to 𝑃𝑟𝑒𝑂𝑟𝑑𝑒𝑟 tree traversal (and 𝐷𝐹𝑆 of
Graph algorithms).

• Time Complexity: O(𝑛). Space Complexity: O(𝑛).

• Solution 2: using level order traversal. This is similar to 𝐵𝐹𝑆 of Graph
algorithms. End of level is identified with nil.

• Time Complexity: O(𝑛). Space Complexity: O(𝑛).

16

Algorithmic and advanced Programming in Python

Problem 8 (bonus): combination of words

• This is a typical interview question when applying to Google or
Facebook

• Given a set of positive numbers, find all possible combinations of words
formed by replacing the continuous digits with the English alphabet’s
corresponding character, i.e., subset {1} can be replaced by A , {2} can be
replaced by B, {1, 2} can be replaced by L {2, 1} can be replaced by U, etc.

• Input: digits[] = { 1, 2, 2, 1 }
Output: ABBA, ABU, AVA, LBA, LU

{1, 2, 2, 1} = ABBA
{1, 2, 21} = ABU
{1, 22, 1} = AVA
{12, 2, 1} = LBA
{12, 21} = LU

17

Algorithmic and advanced Programming in Python

Problem 9 (bonus):
binary trees with same inorder traversal

• This is a typical interview question when applying to Google or
Facebook

• Given an inorder sequence of a binary tree, find all possible binary
trees having that same inorder traversal

• For example, there are 5 binary trees with inorder traversal [1, 2, 3] as
shown below

18

